The paper under review considers graphs with no K_t-minor. The main result proved is that given $t \geq 1$, there is a constant c_t such that for any K_t-free graph G and every set of balls in G, the minimum size of a set of vertices intersecting all the balls is at most c_t times the size of a largest collection of disjoint balls. Here as usual the ball of radius r centred at a vertex v in a graph is the set of all vertices at graph distance at most r from v in the graph. In the language of hypergraph theory, this states that the transversal number of the hypergraph H with vertex set $V(G)$ and hyperedges the set S of balls has transversal number (smallest size of a set of vertices intersecting all edges), $\tau(H)$ at most c_t times the matching number $\mu(H)$. (Note that the inequality $\tau(H) \geq \nu(H)$ is immediate). It is important to understand that c_t does not depend on the radii of the balls. Of course the result applies in particular to planar graphs as planarity implies no K_5-minor. The proofs use the Erdős-Pósa property of the ball hypergraphs and results on their Vapnik-Chervonenkis dimension. The proof of the main result is constructive and could be turned into an efficient algorithm to find a transversal.

Reviewer: David B. Penman (Colchester)

MSC:

05C83 Graph minors
05C10 Planar graphs; geometric and topological aspects of graph theory
05C12 Distance in graphs
05C65 Hypergraphs
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)

Keywords:

packing; covering

Full Text: DOI arXiv

References:

[21] Zbl 0880.05050

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.