This paper deals with the nonlocal Cauchy Problem

\[u_{\varepsilon,t} + (u_{\varepsilon} V (u_{\varepsilon} \ast \eta_{\varepsilon}))_x = 0, \quad u_{\varepsilon}(0, \cdot) = u_0. \]

where \(u_{\varepsilon} \) is the unknown and \(V \) is a given Lipschitz continuous function. The convolution kernel \(\eta_{\varepsilon} \) defined as

\[\eta_{\varepsilon}(x) = \eta \left(\frac{x}{\varepsilon} \right) \frac{1}{\varepsilon}, \quad x \in \mathbb{R}, \]

where \(\eta \geq 0 \), \(\text{supp} (\eta) \subset (-\infty, 0] \), \(\| \eta \|_{L^1} = 1 \), \(\sup \frac{\eta}{\eta'} < \infty \).

On the function \(V \) they assume that

\[V \in C^2, \quad V'' \leq 0, \quad V(u_{\max}) = 0, \quad V'(u) \leq -\delta \text{ for every } u \in [0, u_{\max}], \]

for some \(\delta, u_{\max} > 0 \).

The authors prove that as \(\varepsilon \to 0 \) \(u_{\varepsilon} \) converges to the entropy solution of the Cauchy Problem

\[u_t + (u V(u))_x = 0, \quad u(0, \cdot) = u_0. \]

Reviewer: Giuseppe Maria Coclite (Bari)

MSC:

35L65 Hyperbolic conservation laws

Keywords:
traffic model; nonlocal conservation law; anisotropic kernel; nonlocal continuity equation; local limit; olečkin estimate

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.