A topological group G with $|G| > 1$ is called d-independent if for every subgroup S of G with $|S| < 2^\omega$, one can find a countable dense subgroup H of G such that $S \cap H = \{e\}$. Therefore, d-independent groups are separable and have cardinality at least 2^ω. Our main result is a purely algebraic characterization of d-independence in the class of compact metrizable abelian groups. We prove that a compact metrizable abelian group G with $|G| > 1$ is d-independent if and only if for every integer $m \geq 1$, either $|mG| = 2^\omega$ or $|mG| = 1$. This characterization implies that a compact metrizable abelian group is d-independent if and only if it is maximally fragmentable [Comfort and Dikranjan (2014) [4]] iff G an M-group as defined by Dikranjan and Shakhmatov (2016) in [7].

Also we present a characterization of separable metrizable d-independent abelian groups and show that products of separable topological groups can often be d-independent, even if the factors fail to be d-independent.

MSC:
- 22A05 Structure of general topological groups
- 22C05 Compact groups
- 54H11 Topological groups (topological aspects)

Keywords:
- compact abelian group; M-group; d-independent; separable metrizable; independent subset; locally compact group

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.