Volkov, Darko; Jiang, Yulong
Stability properties of a crack inverse problem in half space. (English) Zbl 07393724

Summary: We show in this paper a Lipschitz stability result for a crack inverse problem in half space. The direct problem is a Laplace equation with zero Neumann condition on the top boundary. The forcing term is a discontinuity across the crack. This formulation can be related to geological faults in elastic media or to irrotational incompressible flows in a half space minus an inner wall. The direct problem is well posed in an appropriate functional space. We study the related inverse problem where the jump across the crack is unknown, and more importantly, the geometry and the location of the crack are unknown. The data for the inverse problem are of Dirichlet type over a portion of the top boundary. We prove that this inverse problem is uniquely solvable under some assumptions on the geometry of the crack. The highlight of this paper is showing a stability result for this inverse problem. Assuming that the crack is planar, we show that reconstructing the plane containing the crack is Lipschitz stable despite the fact that the forcing term for the underlying PDE is unknown. This uniform stability result holds under the assumption that the forcing term is bounded above and the Dirichlet data are bounded below away from zero in appropriate norms.

MSC:
35R30 Inverse problems for PDEs
45Q05 Inverse problems for integral equations

Keywords:
integral equation; inverse problems; inverse problems for PDEs

Full Text: DOI