Cui, Xuelui; Chen, Xiaomin
The k-almost Yamabe solitons and contact metric manifolds. (English) [Zbl 07393756]
Rocky Mt. J. Math. 51, No. 1, 125-137 (2021)

Summary: We introduce the concept of a k-almost Yamabe soliton which extends naturally from Yamabe solitons. Our aim is to study the k-almost Yamabe soliton (g, V, k, λ) on a contact metric manifold M^{2n+1}. Firstly, for a general contact metric manifold, it is proved that V is Killing if the potential vector field V is a contact vector field and that M is K-contact if V is collinear with Reeb vector field. Secondly, we prove that a compact K-contact manifold, admitting a k-almost Yamabe gradient soliton, is isometric to a standard unit sphere. Moreover, for a complete Sasakian manifold admitting a k-almost Yamabe soliton, we show that it is isometric to a standard unit sphere $\mathbb{S}^{2n+1}(1)$ when $n > 1$ and for $n = 1$, M is also isometric to a standard unit sphere if it admits a closed k-almost Yamabe soliton. Finally, we consider a contact metric (κ, μ)-manifold with a nontrivial k-almost Yamabe gradient soliton and show that it is flat in dimension 3 and in higher dimension M is locally isometric to $E^{n+1}\times \mathbb{S}^n(4)$. In the end, we construct two examples of contact metric manifolds with a k-almost Yamabe soliton.

MSC:
53D10 Contact manifolds (general theory)
53D25 Geodesic flows in symplectic geometry and contact geometry
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

Keywords:
k-almost Yamabe soliton; K-contact manifold; Sasakian manifold; contact metric $(\kappa; \mu)$-manifold

Full Text: DOI

References:

