Zhao, Jingang; Zhang, Chi

Summary: This paper investigates finite-horizon optimal control problem of completely unknown discrete-time linear systems. The completely unknown here refers to that the system dynamics are unknown. Compared with infinite-horizon optimal control, the Riccati equation (RE) of finite-horizon optimal control is time-dependent and must meet certain terminal boundary constraints, which brings the greater challenges. Meanwhile, the completely unknown system dynamics have also caused additional challenges. The main innovation of this paper is the developed cyclic fixed-finite-horizon-based Q-learning algorithm to approximate the optimal control input without requiring the system dynamics. The developed algorithm main consists of two phases: the data collection phase over a fixed-finite-horizon and the parameters update phase. A least-squares method is used to correlate the two phases to obtain the optimal parameters by cyclic. Finally, simulation results are given to verify the effectiveness of the proposed cyclic fixed-finite-horizon-based Q-learning algorithm.

MSC:

58F15 Hyperbolic structures (expanding maps, Anosov systems, etc.) (MSC2000)
58F17 Geodesic and horocycle flows (MSC2000)
53C35 Differential geometry of symmetric spaces

Keywords:

finite-horizon; optimal control; discrete-time linear systems; completely unknown dynamics; Q-learning

Full Text: DOI

References:

Y. Wu; Z. H. Yuan; Y. P. Wu, Optimal tracking control for networked control systems with random time delays and packet
doi:10.1016/j.automatica.2014.10.056
K. G. Vamvoudakis, Q-learning for continuous-time linear systems: A model-free infinite horizon optimal control approach,
Zbl 1191.49038
H. G. Zhang; J. He; Y. H. Luo; G. Y. Xiao, Data-driven optimal consensus control for discrete-time multi-agent systems with
F. Y. Wang; N. Jin; D. R. Liu; Q. L. Wei, Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with \(\epsilon\)-error bound, IEEE Transactions on Neural Networks, 22, 24-36 (2011)
Q. L. Wei; D. R. Liu, A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems, Science China(Information Sciences), 58, 1-15 (2015)
J. N. Li; T. Y. Chai; F. L. Lewis; J. L. Fan; Z. T. Ding; J. L. Ding, Off-policy Q-learning: Set-point design for optimizing
doi:10.1109/TIE.2017.2760245
X. X. Li; Z. H. Peng; L. Liang; W. Z. Zha, Policy iteration based Q-learning for linear nonzero-sum quadratic differential
games, Science China(Information Sciences), 62, 195-213 (2019)
Q. Lin; Q. L. Wei; D. R. Liu, A novel optimal tracking control scheme for a class of discrete-time nonlinear systems using
H. L. Liu; Q. X. Zhu, New forms of Riccati equations and the further results of the optimal control for linear discrete-time systems,
International Journal of Control, Automation, and Systems, 12, 1160-1166 (2014) · doi:10.1007/s12555-014-0202-x
B. Luo; D. R. Liu; T. W. Huang; D. Wang, Data-based approximate policy iteration for nonlinear continuous-time optimal
B. Luo; D. R. Liu; T. W. Huang; D. Wang, Model-free optimal tracking control via critic-only Q-learning, IEEE Transactions
on Neural Networks and Learning Systems, 27, 2134-2144 (2016) · doi:10.1109/TNNLS.2016.2585520
B. Luo; D. R. Liu; H. N. Wu, Adaptive constrained optimal control design for data-based nonlinear discrete-time systems with
critic-only structure, IEEE Transactions on Neural Networks and Learning Systems, 29, 2099-2111 (2018) · doi:10.1109/TNNLS.2017.2751018
B. Luo; D. R. Liu; H. N. Wu; D. Wang; F. L. Lewis, Policy gradient adaptive dynamic programming for data-based optimal
control, IEEE Transactions on Cybernetics, 47, 3341-3354 (2017) · doi:10.1109/TCYB.2016.262859
B. Luo; H. N. Wu; T. W. Huang, Optimal output regulation for model-free quanser helicopter with multistep Q-learning,
B. Luo; Y. Yang; D. R. Liu, Adaptive Q-Learning for data-based optimal output regulation with experience replay, IEEE
Transactions on Cybernetics, 48, 3337-3348 (2018)
Y. F. Lv; N. Jing; Q. M. Yang; X. Wu; Y. Guo, Online adaptive optimal control for continuous-time nonlinear systems with
W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality, \((2^{nd}\) edition, Wiley Princeton,
New Jersey, 2011. · Zbl 1242.90002
A. Sahoo; H. Xu; S. Jagannathan, Approximate optimal control of affine nonlinear continuous-time systems using
event-sampled neurodynamic programming, IEEE Transactions on Neural Networks and Learning Systems, 28, 639-652 (2017)
K. G. Vamvoudakis, Q-learning for continuous-time linear systems: A model-free infinite horizon optimal control approach,
Systems and Control Letters, 100, 14-20 (2017) · Zbl 1356.93044
K. G. Vamvoudakis, F. L. Lewis, Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control
problem, Automatica, 46, 878-888 (2010) · Zbl 1191.49038
D. Wang; D. R. Liu; Q. L. Wei, Finite-horizon neuro-optimal tracking control for a class of discrete-time nonlinear systems
using adaptive dynamic programming approach, Neurocomputing, 78, 14-22 (2012)
F. Y. Wang; N. Jin; D. R. Liu; Q. L. Wei, Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with \(\langle\text{varepsilon-}\rangle\) error bound, IEEE Transactions on Neural Networks, 22, 24-36 (2011)
Q. L. Wei; D. R. Liu, A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems, Science China(Information Sciences), 58, 1-15 (2015)
Q. L. Wei; D. R. Liu; H. Q. Lin, Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems, IEE Trans Cybern, 46, 840-853 (2016)
Y. Wu; Z. H. Yuan; Y. P. Wu, Optimal tracking control for networked control systems with random time delays and packet
H. G. Zhang; J. He; Y. H. Luo; G. Y. Xiao, Data-driven optimal consensus control for discrete-time multi-agent systems with
unknown dynamics using reinforcement learning method, IEEE Transactions on Industrial Electronics, 64, 4091-4100 (2017)
Q. C. Zhang; D. B. Zhao; D. Wang, Event-based robust control for uncertain nonlinear systems using adaptive dynamic
J. G. Zhao; M. G. Gan; C. Zhang, Event-triggered \(\langle\text{\{H1, H2, infity} \}\rangle\) optimal control for continuous-time nonlinear systems using neurodynamic programming, Neurocomputing, 360, 14-24 (2019)
Q. M. Zhao, Finite-horizon Optimal Control of Linear and a Class of Nonlinear Systems, Ph.D thesis, Missouri University of

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.