Olfati, Alireza
On atomic ideals in some factor rings of $C(X, Z)$. (English) Zbl 07396222

Summary: A nonzero R-module M is atomic if for each two nonzero elements a, b in M, both cyclic submodules Ra and Rb have nonzero isomorphic submodules. In this article it is shown that for an infinite P-space X, the factor rings $C(X, Z)/C_F(X, Z)$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah et al. [J. Algebra Appl. 19, No. 4, Article ID 2050078, 22 p. (2020; Zbl 1442.16002)], which says that for an infinite set X, the factor ring $Z^X/Z^{(X)}$ has no atomic ideal. Another result is that for each infinite P-space X, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces X are characterized for which $C^F(X, Z)/C_F(X, Z)$ have atomic ideals.

MSC:
54C40 Algebraic properties of function spaces in general topology

Keywords:
P-space; rings of integer-valued continuous functions; functionally countable subalgebra; atomic ideal; socle

Full Text: DOI