Liao, Huiqing; Ma, Heping

Error estimate of a Legendre-Galerkin Chebyshev collocation method for a class of parabolic inverse problem. (English) [Zbl 07398300]

Summary: A Legendre-Galerkin Chebyshev collocation method is presented for the parabolic inverse problem with control parameters. Optimal order of convergence of the semi-discrete method is obtained in L^2-norm for the nonlinear term being not globally Lipschitz continuous. For time-discretization, a Legendre-tau method is applied. The method is implemented by the explicit-implicit iterative method. Suitable basis functions are constructed leading to sparse matrices, and the nonlinear term is collocated at the Chebyshev-Gauss-Lobatto points computed explicitly by the fast Legendre transform. Numerical results are given to show the efficiency and capability of this space-time spectral method.

MSC:
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Kxx Parabolic equations and parabolic systems
35Rxx Miscellaneous topics in partial differential equations

Keywords:
error estimate; spectral method; Legendre-Galerkin Chebyshev collocation; inverse problem; over-specification

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.