Comments on defining entanglement entropy. (English) Zbl 07398677

Summary: We revisit the issue of defining the entropy of a spatial region in a broad class of quantum theories. In theories with explicit regularizations, working within an elementary but general algebraic framework applicable to matter and gauge theories alike, we give precise path integral expressions for three known types of entanglement entropy that we call full, distillable, and gauge-invariant. For a class of gauge theories that do not necessarily have a regularization in our framework, including Chern-Simons theory, we describe a related approach to defining entropies based on locally extending the Hilbert space at the entangling edge, and we discuss its connections to other calculational prescriptions. Based on results from both approaches, we conjecture that it is always the full entanglement entropy that is calculated by standard holographic techniques in strongly coupled conformal theories.

MSC:
81P42 Entanglement measures, concurrences, separability criteria
81R15 Operator algebra methods applied to problems in quantum theory
81S40 Path integrals in quantum mechanics
81P48 LOCC, teleportation, dense coding, remote state operations, distillation
58J28 Eta-invariants, Chern-Simons invariants
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

Full Text: DOI

References:
[15] Radičević, D., Notes on entanglement in Abelian gauge theories
[16] Donnelly, W., Entanglement entropy and nonabelian gauge symmetry, Class. Quantum Gravity, 31, 21, Article 214003 pp. (2014) - Zbl 1304.81121
[27] Chen, Y.-A.; Kapustin, A., Bosonization in three spatial dimensions and a 2-form gauge theory
[48] Wong, G., A note on entanglement edge modes in Chern Simons theory · Zbl 1390.81046

[60] Schnitzer, H. J., Rényi entropy for a 2d CFT with a gauge field: \(\text{\textbf{\text{\hat{operator name}}SU (\textbf{N})_1}}\) WZW theory on a branched torus

[64] Dowker, J. S., Entanglement entropy for even spheres

[70] Pretko, M., On the entanglement entropy of Maxwell theory: a condensed matter perspective - Zbl 1405.81089

[72] Lin, J., Ryu-Takayanagi area as an entanglement edge term

[76] Ghosh, S.; Raju, S., Quantum information measures for restricted sets of observables

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.