Summary: We analyse in detail the language of partially non-abelian Deligne cohomology and of twisted differential K-theory, in order to describe the geometry of type II superstring backgrounds with D-branes. This description will also provide the opportunity to show some mathematical results of independent interest. In particular, we begin classifying the possible gauge theories on a D-brane or on a stack of D-branes using the intrinsic tool of long exact sequences. Afterwards, we recall how to construct two relevant models of differential twisted K-theory, paying particular attention to the dependence on the twisting cocycle within its cohomology class. In this way we will be able to define twisted K-homology and twisted Cheeger-Simons K-characters in the category of simply-connected manifolds, eliminating any unnatural dependence on the cocycle. The ambiguity left for non simply-connected manifolds will naturally correspond to the ambiguity in the gauge theory, following the previous classification. This picture will allow for a complete characterization of D-brane world-volumes, the Wess-Zumino action and topological D-brane charges within the K-theoretical framework, that can be compared step by step to the old cohomological classification. This has already been done for backgrounds with vanishing B-field; here we remove this hypothesis.

MSC:

- 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
- 81T60 Supersymmetric field theories in quantum mechanics
- 18G50 Nonabelian homological algebra (category-theoretic aspects)
- 19L50 Twisted K-theory; differential K-theory
- 70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
- 46M18 Homological methods in functional analysis (exact sequences, right inverses, lifting, etc.)

Full Text: DOI

References:

[14] Evslin, J., What does(n’t) K-theory classify?

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH