Summary: Let G be a nonempty closed subset of a Banach space X. Let $\mathcal{B}(X)$ be the family of nonempty bounded closed subsets of X endowed with the Hausdorff distance and $\mathcal{B}_G(X) = \{A \in \mathcal{B}(X) : A \cap G \neq \emptyset\}$, where the closure is taken in the metric space $(\mathcal{B}(X), H)$. For $x \in X$ and $F \in \mathcal{B}_G(X)$, we denote the nearest point problem $\inf\{|x - g| : g \in G\}$ by $\min(x, G)$ and the mutually nearest point problem $\inf\{|f - g| : f \in F, g \in G\}$ by $\min(F, G)$. In this paper, parallel to well-posedness of the problems $\min(x, G)$ and $\min(F, G)$ which are defined by De Blasi et al., we further introduce the weak well-posedness of the problems $\min(x, G)$ and $\min(F, G)$. Under the assumption that the Banach space X has some geometric properties, we prove a series of results on weak well-posedness of $\min(x, G)$ and $\min(F, G)$. We also give two sufficient conditions such that two classes of subsets of X are almost Chebyshev sets.

MSC:
46B20 Geometry and structure of normed linear spaces
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
54E52 Baire category, Baire spaces

Keywords:
nearest point problem; mutually nearest point problem; weak well-posedness; relatively boundedly weakly compact set; strict convexity; dense $G_δ$-subset

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.