A (para)topological group G is called simply sm-factorizable if for each co-zero set U in G, there exists a continuous homomorphism π of G onto a separable metrizable (para)topological group H such that $U = \pi^{-1}(\pi(U))$.

It is proved that a regular (para)topological group G is simply sm-factorizable if and only if G is projectively strongly submetrizable and every continuous real-valued function on G is uniformly continuous on G_{ω}, the P-modification of G.

It is also established that every precompact paratopological group is simply sm-factorizable.

Reviewer: Yuri Movsisyan (Yerevan)

MSC:
- 22A05 Structure of general topological groups
- 22A30 Other topological algebraic systems and their representations
- 54H11 Topological groups (topological aspects)
- 54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets)
- 54C30 Real-valued functions in general topology

Keywords:
- strongly submetrizable;
- (para)topological group;
- simply sm-factorizable;
- R-factorizable;
- P-group;
- weakly Lindelöf

Full Text: DOI

References:
[17] Sánchez, I.; Tkachenko, M., C-compact and r-pseudocompact subsets of paratopological groups, Topol. Appl., 203, 125-140 (2016) · Zbl 1336.22004
[26] Tkachenko, M., Lindelöf \(\Sigma \)-spaces and \((\mathbb{R}^n)^{\text{-factorizable}} \) paratopological groups, Axioms, 4, 254-267 (2015) · Zbl 1415.22003
[29] Xie, L. H.; Tkachenko, M., Completions of simply \(\mathbb{R} \)-factorizable (para)topological groups, Monatshefte Math., 193, 507-529 (2020) · Zbl 07242549

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.