Pitowsky, Itamar

Correlation polytopes: Their geometry and complexity. (English) Zbl 0741.90054

The author is dealing with the facial structure of the correlation polytope P, which can be defined as follows: for an integer n let $S \subseteq K_n = \{ (i, j) \mid 1 \leq i < j \leq n \}$ and

$$R(n, S) := \{ u(\varepsilon) = (u_1(\varepsilon), \ldots, u_n(\varepsilon), u_{12}(\varepsilon), \ldots, u_{ij}(\varepsilon), \ldots, u_{n-1n}(\varepsilon) \mid u_i(\varepsilon) = \varepsilon \text{ for } i = 1, \ldots, n; u_{ij}(\varepsilon) = \varepsilon_i \cdot \varepsilon_j \text{ for all } (i, j) \in S, \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{0, 1\}^n \}$$

a set of vectors corresponding to S; then $P(n, S)$ is the convex hull of $R(n, S)$ and especially P the convex hull of $R(n, K_n)$.

It is shown that $P(n, S)$ has a non-empty interior and that its facial structure has a large symmetric group; thus one gets an exponential number of different facets by application of the symmetries.

Some facets are determined. Furthermore the author proves that the corresponding decision problem (given a vector $p \in \mathbb{R}_+^{n(n+1)/2}$; is $p \in P$?) is NP-complete. This means that unless $NP = co-NP$ deriving all the inequalities for P is an “impossible” task.

The name “correlation polytope” stems from the fact that every point of $P(n, S)$ can be interpreted in terms of certain probability assignments.

Reviewer: H. Noltemeier (Würzburg)

MSC:

- 90C27 Combinatorial optimization
- 52B12 Special polytopes (linear programming, centrally symmetric, etc.)
- 90C60 Abstract computational complexity for mathematical programming problems

Keywords:

- facial structure
- correlation polytope

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.