Summary: We develop a randomized approximation algorithm for the size of set union problem $|A_1 \cup A_2 \cup \ldots \cup A_m|$, which is given a list of sets A_1, \ldots, A_m with approximate set size m_i for A_i with $m_i \in ((1-\beta_L)|A_i|, (1+\beta_R)|A_i|)$, and biased random generators with probability $\text{Prob}(x = \text{RandomElement}(A_i)) \in [1-\alpha_{L}, 1+\alpha_{R}]$ for each input set A_i and element $x \in A_i$, where $i = 1, 2, \ldots, m$ and $\alpha_{L}, \alpha_{R}, \beta_{L}, \beta_{R} \in (0, 1)$.

The approximation ratio for $|A_1 \cup A_2 \cup \ldots \cup A_m|$ is in the range $[(1-\epsilon)(1-\alpha_{L}), (1+\epsilon)(1+\alpha_{R})]$ for any $\epsilon \in (0, 1)$. The complexity of the algorithm is measured by both time complexity and round complexity. One round of the algorithm has non-adaptive accesses to those RandomElement(A_i) functions $1 \leq i \leq m$, and membership queries ($x \in A_i$?) to input sets A_i with $1 \leq i \leq m$. Our algorithm gives an approximation scheme with $O(m \cdot (\log m)^2)$ running time and $O(\log m)$ rounds in contrast to the existing algorithm [1] that needs $\Omega(m)$ rounds in the worst case with $O((1+\epsilon)m/\epsilon^2)$ running time, where m is the number of sets. Our algorithm gives a flexible tradeoff with time complexity $O(m^{1+\epsilon})$ and round complexity $O(\frac{1}{\epsilon})$ for any $\epsilon \in (0, 1)$. Our algorithm runs sublinear in time under certain condition that each element in $A_1 \cup A_2 \cup \ldots \cup A_m$ belongs to m^a sets for any fixed $a > 0$, to our best knowledge, we have not seen any sublinear results about this problem. Our algorithm can handle input sets that can generate random elements with bias, and its approximation ratio depends on the bias. We prove that it is $\#P$-hard to count the number of lattice points in a set of balls, and we also show that there is no polynomial time approximation algorithm for the maximal coverage problem with balls.

MSC: 68Qxx Theory of computing

Keywords: $\#P$-hard; randomized approximation; lattice points; rounds; sublinear time

Full Text: DOI

References:

[10] Ganguly, S.; Garofalakis, M. N.; Rastogi, R., Tracking set-expression cardinalities over continuous update streams, VLDB J.,

[14] Huang, Z.; Tai, W. M.; Yi, K., Tracking the frequency moments at all times, arXiv preprint

[22] Chen, J.-R., Improvement on the asymptotic formulas for the number of lattice points in a region of three dimensions (ii), Sci. Sin., 12, 5, 739-741 (1963) · Zbl 0146.06003

[27] Mazo, J. E.; Odlyzko, A. M., Lattice points in high-dimensional spheres, Monatshefte Math., 110, 1, 47-61 (1990) · Zbl 0705.11056

[29] Szép, G., Die Gitterpunkte in mehrdimensionalen Kugeln (1926)

[34] Walisz, A., Weylsche exponentialsommen in der neueren zahlentheorie (1963), WEB Deutscher Verlag der Wissenschaften · Zbl 0146.06003

[40] Fu, B., Partial sublinear time approximation and inapproximation for maximum coverage, (Proceedings of the International Computing and Combinatorics Conference (2018)), 492-503 · Zbl 06946811

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.