Existence of multi-bump solutions for a system with critical exponent in \mathbb{R}^N.

Summary: We consider the following system with critical exponent in \mathbb{R}^N:

\[
\begin{align*}
-\Delta u &= K_1(y)u^{2^*-1} + \frac{p}{2^*} V(y)u^{p-1}v^q \quad \text{in } \mathbb{R}^N, \\
-\Delta v &= K_2(y)v^{2^*-1} + \frac{q}{2^*} V(y)u^{p}v^{q-1} \quad \text{in } \mathbb{R}^N, \\
u, v > 0, y \in \mathbb{R}^N,
\end{align*}
\]

where $N \geq 5$, $p, q > 1$ and $p + q = 2^* = \frac{2N}{N-2}$. Using finite dimensional reduction method, we prove the existence of multi-bump solutions. Their bumps can be placed on arbitrarily many or even infinitely many lattice points in \mathbb{R}^N. Since $p < 2$ or $q < 2$, we introduce two new norms to avoid singularity.

MSC:
- 35Jxx Elliptic equations and elliptic systems
- 35Bxx Qualitative properties of solutions to partial differential equations
- 53Cxx Global differential geometry

Keywords:
- elliptic system; critical exponent; finite dimensional reduction; multi-bump solutions

Full Text: DOI

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.