Summary: Let (R, \ast) be a ring with involution and let $A = M(n, R)$ be the matrix ring endowed with the \ast-transpose involution. We study $\text{SL}_\ast(2, A)$ and the question of Bruhat generation over commutative and non-commutative local and adèlic rings R. An important tool is the property of a ring being \ast-Euclidean. In this regard, we introduce the notion of a \ast-local ring R, prove that A is \ast-Euclidean and explore reduction modulo the Jacobson radical for such rings. Globally, we provide an affirmative answer to the question whether a commutative adèlic ring R leads towards the ring A being \ast-Euclidean; while the non-commutative adèlic quaternions are such that A is \ast-Euclidean and SL_\ast is generated by its Bruhat elements if and only if the characteristic is 2.

MSC:

20G35 Linear algebraic groups over adeles and other rings and schemes
20F05 Generators, relations, and presentations of groups
16L30 Noncommutative local and semilocal rings, perfect rings

Keywords:

SL_\ast groups; \ast-Euclidean rings; Bruhat generators