Li, Shuchao; Sun, Wanting; Yu, Yuantian

Adjacency eigenvalues of graphs without short odd cycles. (English) Zbl 07414958
Discrete Math. 345, No. 1, Article ID 112633, 13 p. (2022)

Summary: It is well known that spectral Turán type problem is one of the most classical problems in graph theory. In this paper, we consider the spectral Turán type problem. Let G be a graph and let \mathcal{G} be a set of graphs, we say G is \mathcal{G}-free if G does not contain any element of \mathcal{G} as a subgraph. Denote by λ_1 and λ_2 the largest and the second largest eigenvalues of the adjacency matrix $A(G)$ of G, respectively. In this paper we focus on the characterization of graphs without short odd cycles according to the adjacency eigenvalues of the graphs. Firstly, an upper bound on $\lambda_2^{k_1} + \lambda_2^{k_2}$ of n-vertex $\{C_3, C_5, \ldots, C_{2k+1}\}$-free graphs is established, where k is a positive integer. All the corresponding extremal graphs are identified. Secondly, a sufficient condition for non-bipartite graphs containing an odd cycle of length at most $2k + 1$ in terms of its spectral radius is given. At last, we characterize the unique graph having the maximum spectral radius among the set of n-vertex non-bipartite graphs with odd girth at least $2k + 3$, which solves an open problem proposed by Lin, Ning and Wu [Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2) (2021) 258-270].

MSC:
05Cxx Graph theory
15Axx Basic linear algebra
05-XX Combinatorics

Keywords:
eigenvalue; spectral radius; odd cycle; spectral Turán problem

References:

[18] Har-Peled, S.; Rahul, S., Two (known) results about graphs with no short odd cycles