Datta, Basudeb; Maity, Dipendu

Platonic solids, Archimedean solids and semi-equivelar maps on the sphere. (English)

Zbl 07414968

Discrete Math. 345, No. 1, Article ID 112652, 13 p. (2022)

Summary: A map X on a surface is called vertex-transitive if the automorphism group of X acts transitively on the set of vertices of X. A map is called semi-equivelar if the cyclic arrangement of faces around each vertex is same. In general, semi-equivelar maps on a surface form a bigger class than vertex-transitive maps. There are semi-equivelar maps on the torus, the Klein bottle and other surfaces which are not vertex-transitive. It is known that the boundaries of Platonic solids, Archimedean solids, regular prisms and anti-prisms are vertex-transitive maps on S^2. Here we show that there is exactly one semi-equivelar map on S^2 which is not vertex-transitive. As a consequence, we show that all the semi-equivelar maps on R^2 are vertex-transitive. Moreover, every semi-equivelar map on S^2 can be geometrized, i.e., every semi-equivelar map on S^2 is isomorphic to a semi-regular tiling of S^2. In the course of the proof of our main result, we present a combinatorial characterisation in terms of an inequality of all the types of semi-equivelar maps on S^2. Here we present combinatorial proofs of all the results.

MSC:

52A55 Spherical and hyperbolic convexity
52C22 Tilings in n dimensions (aspects of discrete geometry)
52A40 Inequalities and extremum problems involving convexity in convex geometry

Keywords:

polyhedral maps on sphere; vertex-transitive maps; semi-equivelar maps; semi-regular tilings; Archimedean solids

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.