Dokuchaev, Mikhailo; Mandel, Arnaldo; Plakhotnyk, Makar

The cone of quasi-semimetrics and exponent matrices of tiled orders. (English) Zbl 07414977

Discrete Math. 345, No. 1, Article ID 112665, 11 p. (2022)

Summary: Finite quasi semimetrics on \(n \) can be thought of as nonnegative valuations on the edges of a complete directed graph on \(n \) vertices satisfying all possible triangle inequalities. They comprise a polyhedral cone whose symmetry groups were studied for small \(n \) by Deza, Dutour and Panteleeva. We show that the symmetry and combinatorial symmetry groups are as they conjectured.

Integral quasi semimetrics have a special place in the theory of tiled orders, being known as exponent matrices, and can be viewed as monoids under componentwise maximum; we provide a novel derivation of the automorphism group of that monoid. Some of these results follow from more general consideration of polyhedral cones that are closed under componentwise maximum.

MSC:

16Hxx Associative algebras and orders
05Cxx Graph theory

Keywords:
quasi-semimetric; polyhedral cone; exponent matrix; face lattice; symmetry; max-plus algebra

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2021 FIZ Karlsruhe GmbH