Bell, Jason P.; Chen, Shaoshi; Hossain, Ehsaan
Rational dynamical systems, S-units, and D-finite power series. (English) Zbl 07419509
Algebra Number Theory 15, No. 7, 1699-1728 (2021)

Summary: Let K be an algebraically closed field of characteristic zero, let G be a finitely generated subgroup of the multiplicative group of K, and let X be a quasiprojective variety defined over K. We consider K-valued sequences of the form $a_n := f(\varphi^n(x_0))$, where $\varphi : X \to X$ and $f : X \to \mathbb{P}^1$ are rational maps defined over K and $x_0 \in X$ is a point whose forward orbit avoids the indeterminacy loci of φ and f. Many classical sequences from number theory and algebraic combinatorics fall under this dynamical framework, and we show that the set of n for which $a_n \in G$ is a finite union of arithmetic progressions along with a set of upper Banach density zero. In addition, we show that if $a_n \in G$ for every n and X is irreducible and the φ orbit of x is Zariski dense in X then there is a multiplicative torus G^d_m and maps $\Psi : G^d_m \to G^d_m$ and $g : G^d_m \to G_m$ such that $a_n = (g \circ \Psi^n)(y)$ for some $y \in G^d_m$. We then obtain results about the coefficients of D-finite power series using these facts.

MSC:

37P55 Arithmetic dynamics on general algebraic varieties
12H05 Differential algebra
14E05 Rational and birational maps

Keywords:

S-units; D-finite series; arithmetic dynamics; algebraic groups; orbits