Simson, Daniel; Zając, Katarzyna
Applications of mesh algorithms and self-dual mesh geometries of root Coxeter orbits to a Horn-Sergeichuk type problem. (English) Zbl 07425709
Linear Algebra Appl. 632, 79-152 (2022)

Summary: One of the main aims of the paper is to develop the mesh geometry technique for corank-two edge-bipartite graphs Δ with $n+2 \geq 3$ vertices, and the mesh algorithms introduced in [D. Simson, J. Pure Appl. Algebra 215, No. 1, 13-34 (2011; Zbl 1202.15030); Fundam. Inform. 123, No. 4, 447–490 (2013; Zbl 1290.68138)] and successfully studied in our recent article [Linear Algebra Appl. 610, 698–765 (2021; Zbl 1460.05080)]. We introduce and study the concept of a self-duality of mesh geometries $\Gamma(\tilde{\Delta}, \Phi_\Delta)$ viewed as Φ_Δ-mesh translation quivers. We show how self-dualities of mesh geometries $\Gamma(\tilde{\Delta}, \Phi_\Delta)$ and the mesh geometry technique is applied to an affirmative algorithmic solution of so called Horn-Sergeichuk type problem [M. Gaśiorczek and D. Simson, Colloq. Math. 127, No. 1, 83–103 (2012; Zbl 1260.06005), Problem 4.3] on the self-congruency of square integer matrices

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH

[32] Simson, D., A Coxeter spectral classification of positive edge-bipartite graphs, I: Dynkin types $\mathcal{B}_n, \mathcal{C}_n, \mathcal{F}_4, \mathcal{G}_2, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8$, Linear Algebra Appl., 557, 105-133 (2018) · Zbl 1396.05049

[33] Simson, D., Symbolic computations of strong Gram congruences for positive Cox-regular edge-bipartite graphs with loops, Linear Algebra Appl., 573, 90-143 (2019) · Zbl 1411.05108

[34] Simson, D., A Coxeter spectral classification of positive edge-bipartite graphs, II: Dynkin type \mathbb{D}_n, Linear Algebra Appl., 612, 223-272 (2021) · Zbl 1459.05113

[38] Zając, K., Numeric algorithms for corank two edge-bipartite graphs and their mesh geometries of roots, Fundam. Inform., 152, 1-36 (2017) · Zbl 1375.05167

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.