Summary: We present a new model for hybrid planarity that relaxes existing hybrid representation models. A graph $G = (V, E)$ is (k, p)-planar if V can be partitioned into clusters of size at most k such that G admits a drawing where: (i) each cluster is associated with a closed, bounded planar region, called a cluster region; (ii) cluster regions are pairwise disjoint, (iii) each vertex $v \in V$ is identified with at most p distinct points, called ports, on the boundary of its cluster region; (iv) each inter-cluster edge $(u, v) \in E$ is identified with a Jordan arc connecting a port of u to a port of v; (v) inter-cluster edges do not cross or intersect cluster regions except at their end-points. We first tightly bound the number of edges in a (k, p)-planar graph with $p < k$. We then prove that $(4, 1)$-planarity testing and $(2, 2)$-planarity testing are NP-complete problems. Finally, we prove that neither the class of $(2, 2)$-planar graphs nor the class of 1-planar graphs contains the other, indicating that the (k, p)-planar graphs are a large and novel class.

MSC: 68Qxx Theory of computing

Keywords: (k, p)-planarity; hybrid representation models

Software: NodeTrix; ChordLink

Full Text: DOI

References:
[12] Eades, P.; de Mendonça Neto, C. F.X., Vertex splitting and tension-free layout, (Graph Drawing, Symposium on Graph Drawing, GD ’95, Graph Drawing, Symposium on Graph Drawing, GD ’95, Passau, Germany, September 20-22, 1995, Proceedings (1995)), 202-211

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.