Brasco, Lorenzo; De Philippis, Guido; Franzina, Giovanni
Positive solutions to the sublinear Lane-Emden equation are isolated.

The authors establish the following fine and important property of positive solutions of the sublinear Lane-Emden problem $-\Delta u = |u|^{q-2}u$ in a bounded open set Ω with zero Dirichlet boundary conditions on $\partial\Omega$, $1 < q < 2$. Namely, it is proved that, under certain regularity assumptions on Ω, the unique positive minimizer w of the energy functional $\frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{1}{q} \int_{\Omega} |u|^q \, dx$ in $H^1_0(\Omega)$ is isolated in the $L^1(\Omega)$-norm topology. As a consequence, the least generalized frequency $\lambda_1 = \min\{\int_{\Omega} |\nabla u|^2 \, dx : \int_{\Omega} |u|^q \, dx = 1\}$ is isolated in the sense that the second smallest frequency λ_2 satisfies $\lambda_1 < \lambda_2$. In contrast, if required regularity assumptions on Ω are violated, λ_1 might not be isolated, see [L. Brasco and G. Franzina, Adv. Nonlinear Anal. 8, 707–714 (2019; Zbl 1412.35209)]. As the main auxiliary tool for the proof, the authors comprehensively study the weighted embedding $H^1_0(\Omega) \hookrightarrow L^q(\Omega; w^{-2})$.

Reviewer: Vladimir Bobkov (Ufa)

MSC:

- [35P30](https://zbmath.org/classification/35P30) Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
- [35B38](https://zbmath.org/classification/35B38) Critical points of functionals in context of PDEs (e.g., energy functionals)
- [35J61](https://zbmath.org/classification/35J61) Semilinear elliptic equations
- [35R09](https://zbmath.org/classification/35R09) Integro-partial differential equations
- [49R05](https://zbmath.org/classification/49R05) Variational methods for eigenvalues of operators
- [58E05](https://zbmath.org/classification/58E05) Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

Keywords:

- cone condition; constrained critical points; Lane-Emden equation; first eigenvalue

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.