On the edge-length ratio of 2-trees.

Summary: We study planar straight-line drawings of graphs that minimize the ratio between the length of the longest and the shortest edge. We answer a question of Lazard et al. [Theor. Comput. Sci. 770 (2019), 88–94] and, for any given constant r, we provide a 2-tree which does not admit a planar straight-line drawing with a ratio bounded by r. When the ratio is restricted to adjacent edges only, we prove that any 2-tree admits a planar straight-line drawing whose edge-length ratio is at most $4 + \varepsilon$ for any arbitrarily small $\varepsilon > 0$, hence the upper bound on the local edge-length ratio of partial 2-trees is 4.

MSC:
68R10 Graph theory (including graph drawing) in computer science
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Keywords:
planar straight-line drawing; edge-length ratio; 2-tree

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.