Summary: Given a sufficiently symmetric domain $\Omega \Subset \mathbb{R}^2$, for any $k \in \mathbb{N} \setminus \{0\}$ and $\beta > 4\pi k$ we construct blowing-up solutions $(u_\varepsilon) \subset H^1_0(\Omega)$ to the Moser-Trudinger equation such that as $\varepsilon \downarrow 0$, we have $\|\nabla u_\varepsilon\|_{L^2}^2 \to \beta$, $u_\varepsilon \rightharpoonup u_0$ in H^1_0 where u_0 is a sign-changing solution of the Moser-Trudinger equation and u_ε develops k positive spherical bubbles, all concentrating at $0 \in \Omega$. These 3 features (lack of quantization, non-zero weak limit and bubble clustering) stand in sharp contrast to the positive case ($u_\varepsilon > 0$) studied by the second author and Druet [8].

MSC:

35-XX Partial differential equations
81-XX Quantum theory

Keywords:
Moser-Trudinger equation; clustering blow-up; nodal solutions; nonzero weak limit

Full Text: DOI

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.