Summary: In this paper, we present a general Banach space of absolutely k-summable series using a triangle matrix operator and prove that this is a BK-space isometrically isomorphic to the space ℓ_k. We also establish the α-, β-, γ-duals and base of the new space. Finally, we qualify some matrix and compact operators on the new space making use of the Hausdorff measure of noncompactness. Our results include, as particular cases, a number of well-known results.

MSC:
46A45 Sequence spaces (including Köthe sequence spaces)
46B45 Banach sequence spaces
40C05 Matrix methods for summability
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)

Keywords:
sequence space; absolute summability; matrix mapping; compact operator; Hausdorff measure of non-compactness

Full Text: DOI

References:

M. A. Sarıgöl, Necessary and sufficient conditions for the equivalence of the summability methods \(\overline{N},p_n\) and \(C,1\), Indian J. Pure Appl. Math. 22 (1991), no. 6, 483-489. · Zbl 0751.40005

M. A. Sarıgöl, Extension of Mazhar’s theorem on summability factors, Kuwait J. Sci. 42 (2015), no. 3, 28-35. · Zbl 1435.40003

M. A. Sarıgöl, Norms and compactness of operators on absolute weighted mean summable series, Kuwait J. Sci. 43 (2016), no. 4, 68-74. · Zbl 1454.47041

G. Sunouchi, Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms, Tohoku Math. J. (2) 1 (1949), 57-65. · Zbl 0041.39101

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.