Yang, Liping; Zhang, Hao
Generic Newton polygons for L-functions of (A, B)-exponential sums. (English) Zbl 07457368
Finite Fields Appl. 78, Article ID 101980, 20 p. (2022)

Summary: In this paper, we consider the following (A, B)-polynomial f over finite field:

$$f(x_0, x_1, \cdots, x_n) = x_0^A h(x_1, \cdots, x_n) + g(x_1, \cdots, x_n) + P_B(1/x_0),$$

where h is a Deligne polynomial of degree d, g is an arbitrary polynomial of degree less than $dB/(A + B)$ and $P_B(y)$ is a one-variable polynomial of degree less than or equal to B. Let Δ be the Newton polyhedron of f at infinity. We show that Δ is generically ordinary if $p \equiv 1 \mod D$, where D is a constant determined by Δ. In other words, we prove that the Adolphson-Sperber conjecture is true for Δ.

MSC:
11T06 Polynomials over finite fields
11T23 Exponential sums
11S40 Zeta functions and L-functions

Keywords:
(A, B)-polynomial; L-function; exponential sum; Newton polygon; Hodge polygon

Full Text: DOI

References:
[10] Li, J. Y., Newton polynomials of L-functions associated to Deligne polynomials, Finite Fields Appl., 75, Article 101880 pp. (2021) · Zbl 1472.11302

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.