Let V be a vector space of dimension N over the finite field \mathbb{F}_q and T be a linear operator on V. Given an integer m that divides N, an m-dimensional subspace W of V is T-splitting if $V = W \oplus TW \oplus \cdots \oplus T^{d-1}W$ where $d = N/m$. Let $\sigma(m, d; T)$ denote the number of m-dimensional T-splitting subspaces. Determining $\sigma(m, d; T)$ for an arbitrary operator T is an open problem. We prove that $\sigma(m, d; T)$ depends only on the similarity class type of T and give an explicit formula in the special case where T is cyclic and nilpotent. Denote by $\sigma_q(m, d; \tau)$ the number of m-dimensional splitting subspaces for a linear operator of similarity class type τ over an \mathbb{F}_q-vector space of dimension md. For fixed values of m, d and τ, we show that $\sigma_q(m, d; \tau)$ is a polynomial in q.

MSC:
11T06 Polynomials over finite fields
05A15 Exact enumeration problems, generating functions
11T99 Finite fields and commutative rings (number-theoretic aspects)
15B33 Matrices over special rings (quaternions, finite fields, etc.)
05A05 Permutations, words, matrices

Keywords:
splitting subspace; Krylov space; anti-invariant subspace; invariant subspace lattice; q-Vandermonde identity; finite field

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.