Let \(P \) be a set of \(n \) points in the plane. Assume \(k \geq 3 \). The problem considered is to find a convex polygon \(C \) with vertices from \(P \) of minimum area that satisfies one of the following conditions:
1. \(C \) is a convex \(k \)-gon,
2. \(C \) is an empty convex \(k \)-gon (i.e., \(P \cap \text{int}C = \emptyset \)),
3. \(C \) is the convex hull of exactly \(k \) points of \(P \).

It is shown here that each of these problems can be solved by an algorithm of time complexity \(O(kn^3) \) and space complexity \(O(kn^2) \) (for \(k = 4 \) this is only \(O(n) \)). The algorithms are based on dynamic programming. The method extends to several similar extremum problems.

Reviewer: I.Bárány (Budapest)

MSC:
- 68Q25 Analysis of algorithms and problem complexity
- 52A10 Convex sets in 2 dimensions (including convex curves)
- 90C39 Dynamic programming

Keywords:
- convex \(k \)-gon

Full Text: DOI EuDML

References:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.