Rademacher, Hans-Bert

Critical values of homology classes of loops and positive curvature. (English) Zbl 07467759

Summary: We study compact and simply-connected Riemannian manifolds \((M, g)\) with positive sectional curvature \(K \geq 1\). For a nontrivial homology class of lowest positive dimension in the space of loops based at a point \(p \in M\) or in the free loop space one can define a critical length \(\text{crl}_p(M, g)\) resp. \(\text{crl}(M, g)\). Then \(\text{crl}_p(M, g)\) equals the length of a geodesic loop with base point \(p\) and \(\text{crl}(M, g)\) equals the length of a closed geodesic. This is the idea of the proof of the existence of a closed geodesic of positive length presented by Birkhoff in case of a sphere and by Lusternik & Fet in the general case. It is the main result of the paper that the numbers \(\text{crl}_p(M, g)\) resp. \(\text{crl}(M, g)\) attain its maximal value \(2\pi\) only for the round metric on the \(n\)-sphere.

Under the additional assumption \(K \leq 4\) this result for \(\text{crl}(M, g)\) follows from results by Sugimoto in even dimensions and Ballmann, Thorbergsson & Ziller in odd dimensions.

MSC:
53C20 Global Riemannian geometry, including pinching
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C22 Geodesics in global differential geometry
53C24 Rigidity results
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
53-XX Differential geometry

Keywords:
free loop space; geodesic loops; loop space; Morse theory; positive sectional curvature

Full Text: DOI Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.