Apanasov, Boris N.

For a set X in the n-dimensional Euclidean space \mathbb{R}^n, an embedding $f: X \rightarrow \mathbb{R}^n$ is called quasisymmetric if there is a homeomorphism $c: [0, \infty) \rightarrow [0, \infty)$ such that $|f(y) - f(x)| \leq c(r)|f(z) - f(x)|$ for all $x, y, z \in X$ with $|y - x| \leq r|z - x|$. In the case $n = 2$, it is well known that every quasisymmetric embedding of a closed disc B^2 into \mathbb{R}^2 can be extended to a quasiconformal automorphism of \mathbb{R}^2.

On the other hand, F. W. Gehring [Tr. Mezhdunarod. Kongr. Mat., Moskva 1966, 313–318 (1968; Zbl 0193.03803)] proved that there are quasisymmetric embeddings of a closed ball B^3 into \mathbb{R}^3 which cannot be extended to embeddings of an open neighborhood U of B^3.

In this paper, the author constructs a quasisymmetric embedding of a closed ball B into \mathbb{R}^3 which is quasiconformal inside B and cannot be extended to an embedding of any neighborhood of any boundary point of B. In his argument he constructs a geometrically finite Kleinian group acting on \mathbb{R}^3 whose limit set is a wildly knotted sphere and uses an ingenious construction of the spherical covering.

Reviewer: T. Kuroda (Sendai) (M.R. 91a:30016)

MSC:

30C65 Quasiconformal mappings in \mathbb{R}^n, other generalizations
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)

Keywords:
quasisymmetric embedding; Kleinian group

Full Text: DOI