Lyu, Wenbin
Asymptotic stabilization for a class of chemotaxis-consumption systems with generalized logistic source. (English) Zbl 07472457

Summary: This paper is concerned with a chemotaxis-consumption system
\[
\begin{align*}
\frac{du}{dt} &= \nabla \cdot (\nabla u - uS(x, u, v) \cdot \nabla v) + \rho u - \mu u^l, \\
\frac{dv}{dt} &= \Delta v - uv,
\end{align*}
\]
under no-flux boundary conditions in a smooth bounded domain \(\Omega \subset \mathbb{R}^n \) \(n \geq 1\), where the chemotactic sensitivity tensor \(S \in C^2(\Omega \times [0, +\infty)^2; \mathbb{R}^{n \times n})\) fulfills that there exists some nondecreasing function \(S_0\) on \([0, +\infty)\) such that
\[|S(x, u, v)| \leq S_0(v)\] for all \((x, u, v) \in \Omega \times [0, +\infty) \times [0, +\infty)\).

We show that for any \(\rho, \mu > 0\) and \(l > 1\), any generalized solution of the above system asymptotically approaches to the nontrivial spatially homogeneous steady state
\[
\left(\left(\frac{\rho}{\mu} \right)^{\frac{1}{l-1}}, 0 \right)
\]
as \(t \to +\infty\).

MSC:
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)

Keywords:
stabilization; chemotaxis-consumption; generalized logistic source; no-flux boundary conditions

Full Text: DOI

References:
[10] Kalantarov, V. K.; Zelik, S., Smooth attractors for the brinkman-forchheimer equations with fast growing nonlinearities,
Zbl 1439.35113 Winkler, M., Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions, Zbl 1268.35016
Zbl 1395.35048
Zbl 1311.35040
Zbl 1439.35243
Zbl 1465.35065

Lv, W. B., Global existence for a class of chemotaxis-consumption systems with signal-dependent motility and generalized logistic source, Nonlinear Anal. RWA, 56, Article 103160 pp. (2020) - Zbl 1471.35179

Tao, Y. S.; Winkler, M., Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252, 3, 2520-2543 (2012) - Zbl 1288.35016

Tao, Y. S.; Winkler, M., Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252, 3, 2520-2543 (2012) - Zbl 1288.35016

Tello, J. I.; Winkler, M., A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32, 4-6, 849-877 (2007) - Zbl 1121.37068

M. Winkler, \(L^1 \)-solutions to parabolic keller-segel systems involving arbitrary superlinear degradation. Preprint.

Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35, 8, 1516-1537 (2010) - Zbl 1290.35139

Winkler, M., Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic damping, J. Differential Equations, 257, 4, 1056-1077 (2014) - Zbl 1308.35049

Winkler, M., Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263, 8, 4826-4869 (2017) - Zbl 1370.35009

[42] Xiang, T., Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system, J. Math. Phys., 59, 8, 11 (2018), 081502 · Zbl 1395.92025

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.