Summary: For every tuple $d_1, \ldots, d_l \geq 2$, let $\mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_l}$ denote the tensor product of \mathbb{R}^{d_i}, $i = 1, \ldots, l$. Let us denote by $\mathcal{B}(d)$ the hyperspace of centrally symmetric convex bodies in \mathbb{R}^d, $d = d_1 \cdots d_l$, endowed with the Hausdorff distance, and by $\mathcal{B}_\otimes(d_1, \ldots, d_l)$ the subset of $\mathcal{B}(d)$ consisting of the convex bodies that are closed unit balls of reasonable crossnorms on $\mathbb{R}^{d_1} \otimes \cdots \otimes \mathbb{R}^{d_l}$. It is known that $\mathcal{B}_\otimes(d_1, \ldots, d_l)$ is a closed, contractible and locally compact subset of $\mathcal{B}(d)$. The hyperspace $\mathcal{B}_\otimes(d_1, \ldots, d_l)$ is called the space of tensorial bodies. In this work we determine the homeomorphism type of $\mathcal{B}_\otimes(d_1, \ldots, d_l)$. We show that even if $\mathcal{B}_\otimes(d_1, \ldots, d_l)$ is not closed with respect to the Minkowski sum, it is an absolute retract homeomorphic to $Q \times \mathbb{R}^p$, where Q is the Hilbert cube and $p = \frac{d_1(d_1+1)+\cdots+d_l(d_l+1)}{2}$. Among other results, the relation between the Banach-Mazur compactum and the Banach-Mazur type compactum associated to $\mathcal{B}_\otimes(d_1, \ldots, d_l)$ is examined.

MSC:
52A07 Convex sets in topological vector spaces (aspects of convex geometry)
46A55 Convex sets in topological linear spaces; Choquet theory
46B28 Spaces of operators; tensor products; approximation properties
57N16 Geometric structures on manifolds of high or arbitrary dimension

Keywords:
infinite-dimensional topology; convex body; tensor norm; hyperspace; tensor product of convex sets; Banach-Mazur compactum

Full Text: DOI arXiv

References:

[16] Defant, K.; Floret, K., Tensor Norms and Operator Ideals (1992), North Holland Mathematics Studies

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.