Liu, Ruifang; Lai, Hong-Jian; Li, Rao
Hamiltonian s-properties and eigenvalues of k-connected graphs. (English) [Zbl 07473531]
Discrete Math. 345, No. 4, Article ID 112774, 9 p. (2022)

Summary: V. Chvátal and P. Erdős [ibid. 2, 111–113 (1972; Zbl 0233.05123)] proved that, for a k-connected graph \(G \), if the stability number \(\alpha(G) \leq k - s \), then \(G \) is Hamilton-connected \((s = 1)\) or Hamiltonian \((s = 0)\) or traceable \((s = -1)\). Motivated by the result, we focus on tight sufficient spectral conditions for k-connected graphs to possess Hamiltonian s-properties. We say that a graph possesses Hamiltonian s-properties, which means that the graph is Hamilton-connected if \(s = 1 \), Hamiltonian if \(s = 0 \), and traceable if \(s = -1 \).

For a real number \(a \geq 0 \), and for a \(k \)-connected graph \(G \) with order \(n \), degree diagonal matrix \(D(G) \) and adjacency matrix \(A(G) \), we have identified best possible upper bounds for the spectral radius \(\lambda_1(aD(\Gamma) + A(\Gamma)) \), where \(\Gamma \) is either \(G \) or the complement of \(G \), to warrant that \(G \) possesses Hamiltonian s-properties.

Sufficient conditions for a graph \(G \) to possess Hamiltonian s-properties in terms of upper bounds for the Laplacian spectral radius as well as lower bounds of the algebraic connectivity of \(G \) are also obtained.

Other best possible spectral conditions for Hamiltonian s-properties are also discussed.

MSC:
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C40 Connectivity
05C45 Eulerian and Hamiltonian graphs
15A42 Inequalities involving eigenvalues and eigenvectors

Keywords:
k-connected graphs; Hamiltonian s-properties; eigenvalues; quotient matrix

Full Text: DOI

References: