Atallah, Mikhail J.; Tsay, Jyh-Jong
On the parallel-decomposability of geometric problems. (English) Zbl 0748.68079

Summary: There is a large and growing body of literature concerning the solutions of geometric problems on mesh-connected arrays of processors. Most of these algorithms are optimal (i.e., run in time $O(n^{1/d})$ on a d-dimensional n-processor array), and they all assume that the parallel machine is trying to solve a problem of size n on an n-processor array. Here we investigate the situation where we have a mesh of size p and we are interested in using it to solve a problem of size $n > p$. The goal we seek is to achieve, when solving a problem of size $n > p$, the same speed up as when solving a problem of size p. We show that for many geometric problems, the same speedup can be achieved when solving a problem of size $n > p$ as when solving a problem of size p.

MSC:
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68W15 Distributed algorithms

Keywords:
mesh-connected arrays of processors

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.