Menger-bounded groups and axioms about filters.

Summary: A topological group G is Menger-bounded if, for each sequence U_1, U_2, \ldots of open sets, there are finite sets F_1, F_2, \ldots such that $G = \bigcup_n F_n \cdot U_n$. It is Scheepers-bounded if all of its finite powers are Menger-bounded. A notorious open problem asks whether, consistently, every product of two Menger-bounded subgroups of the Baer-Specker group Z^N is Menger-bounded. We prove that the same assertion for Scheepers-bounded groups is equivalent to the set-theoretic axiom NCF (Near Coherence of Filters). We also show that Menger-bounded sets are not productive, and that the preservation of Scheepers-bounded subsets of $[\mathbb{N}]^{<\omega}$ by finite-to-one quotients is equivalent to nonexistence of rapid filters.

MSC:

03E17 Cardinal characteristics of the continuum
26A03 Foundations: limits and generalizations, elementary topology of the line
03E75 Applications of set theory

Keywords:
Menger-bounded set; Scheepers-bounded set; NCF; rapid filter

Full Text: DOI

References:

