Zhang, Yigang; Chen, Xiangyong; Wang, Jing; Shi, Kaibo; Shen, Hao

Generalized dissipative state estimation for discrete-time nonhomogeneous semi-Markov jump nonlinear systems. (English) [Zbl 07484316]
J. Franklin Inst. 359, No. 4, 1689-1705 (2022)

Summary: The problem of generalized dissipative state estimation for discrete-time nonhomogeneous semi-Markov jump nonlinear systems is concerned in this paper. In this paper, we consider the semi-Markov renewal chain is nonhomogeneous and the states of the system are inaccessible. The aim of this paper is to propose the estimator-designed method to ensure that the system is σ-mean-square stable and satisfy extended dissipative performance. By using the semi-Markov kernel method and polytopic approach, and constructing a new type of Lyapunov function, which not only depends on the sojourn-time but also on the stochastic switching rules, the state estimator gains can be obtained. At last, a numerical example is adopted to verify the superiority of the presented control strategy.

MSC:

93E15 Stochastic stability in control theory
93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory

Keywords:
dissipative state estimation; discrete-time semi-Markov jump nonlinear systems

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.