Bold, Matthew; Goerigk, Marc
Investigating the recoverable robust single machine scheduling problem under interval uncertainty. (English) Zbl 07499200
Discrete Appl. Math. 313, 99-114 (2022)

Summary: We investigate the recoverable robust single machine scheduling problem under interval uncertainty. In this setting, jobs have first-stage processing times p and second-stage processing times q and we aim to find a first-stage and second-stage schedule with a minimum combined sum of completion times, such that at least Δ jobs share the same position in both schedules.

We provide positive complexity results for some important special cases of this problem, as well as derive a 2-approximation algorithm to the full problem. Computational experiments examine the performance of an exact mixed-integer programming formulation and the approximation algorithm, and demonstrate the strength of a proposed polynomial time greedy heuristic.

MSC:
90B36 Stochastic scheduling theory in operations research
90C11 Mixed integer programming
68W25 Approximation algorithms
90C59 Approximation methods and heuristics in mathematical programming

Keywords:
scheduling; optimisation under uncertainty; recoverable robustness

Full Text: DOI

References:
[20] Liebchen, C.; Lübbecke, M.; Möhring, R.; Stiller, S., The concept of recoverable robustness, linear programming recovery, and railway applications, (Robust and Online Large-Scale Optimization (2009), Springer), 1-27 · Zbl 1366.90044

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.