Viswanath, M. K.; Kumar, M. Ranjith
A public key cryptosystem using Hill’s cipher. (English) Zbl 07509039

MSC:
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
14G50 Applications to coding theory and cryptography of arithmetic geometry
68P25 Data encryption (aspects in computer science)
68R01 General topics of discrete mathematics in relation to computer science
94A60 Cryptography

Keywords:
Hill cipher; public key; digital signature; rectangular matrix; Moore-Penrose inverse and Diffie-Hellman key exchange protocol

Full Text: DOI

References:
[3] Eisenberg, M., Hill ciphers and Modular Linear Algebra, Mimeographed Notes (1998), University of Massachusetts
[6] Hofstein, Jeffrey; Pipher, Jill; Silverman, Joseph H., An introduction to mathematical cryptography (2008), Springer · Zbl 1160.94001
[7] Lester Hill, S., Cryptography in an algebraic alphabet, Amer. Math, 306-312 (1929) · Zbl 55.0622.08
[10] Penrose, R., A generalized Inverse for matrices, Communicated by J.A. Todd · Zbl 0065.24603
[12] Rhee; Young, Man, Cryptography and Secure Communications (1994), McGraw - Hill co

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.