Shi, Lin; Zhang, Chunmei; Zhong, Shouming
Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control. (English) Zbl 07514652
Chaos Solitons Fractals 145, Article ID 110805, 11 p. (2021)

Summary: In this paper, the problem on synchronization is investigated for singular complex networks with time-varying delay via pinning control and linear feedback control. Together with some Lyapunov-Krasovskii functions and effective mathematical techniques, the variation interval of the time delay is divided into several subintervals, several conditions are derived to guarantee a class of singular complex networks with time-varying delay to be synchronized. Finally, examples are given to illustrate the effectiveness of the proposed methods.

MSC:
34D06 Synchronization of solutions to ordinary differential equations
34H05 Control problems involving ordinary differential equations
37N35 Dynamical systems in control

Keywords:
synchronization; singular complex networks; LMI approach; time-varying delays; pinning control; linear feedback control

Full Text: DOI

References:
[17] Lu, J.; Cao, J.; Ho, D. W.C., Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay,

[54] Li, B., Pinning adaptive hybrid synchronization of two general complex dynamical networks with mixed coupling, Appl Math Model, 40, 2983-2998 (2016) · Zbl 1452.93013

[57] Li, H., Leader-following consensus of nonlinear multi-agent systems with mixed delays and uncertain parameters via adaptive pinning intermittent control, Nonlinear Anal Hybrid Syst, 22, 202-214 (2016) · Zbl 1344.93007

[58] Xie, L., Output feedback H∞(\text{\emph{\infy}}) control of systems with parameter uncertainty, Int J Control, 63, 741-750 (1996) · Zbl 0841.93014

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.