Let \mathcal{U} and \mathcal{V} be open covers of a space X. \mathcal{V} is a shrinkable refinement of \mathcal{U} [the reviewer with M. P. Berri and R. M. Stephenson jun., Proc. Kanpur Topol. Conf. 1968, 93–114 (1971; Zbl 0235.54018)] if for each $V \in \mathcal{V}$, there is a $U \in \mathcal{U}$ such that $\text{cl} \ V \subseteq U$. A space is $U(i)$ or quasi-U-closed [C. T. Scarborough, Pac. J. Math. 27, 611–617 (1968; Zbl 0189.23104)] if every open cover with shrinkable refinement has a finite subfamily whose closures cover. The authors introduce the concept of R-compactness; a space is R-compact if every open cover with shrinkable refinement has a finite subcover. It follows that a quasi-H-closed space is R-compact and an R-compact space is quasi-U-closed. Many characterizations and some mapping results of R-compact are obtained.

Reviewer: J. R. Porter (Lawrence)

MSC:

54D30 Compactness
54D25 "P-minimal" and "P-closed" spaces

Keywords:

quasi-H-closed space; almost compact space