Groze, Sever; Chiorean, Ioana

For the solution of the operator equation $P(x) = 0$ in a Fréchet space, a method analogous to the method of tangent hyperbolas is presented, where $P : X \to X$ is a nonlinear continuous mapping and X is a Fréchet space with given quasinorm. The operator P has the form $P(x) = x - F(x)$, and the iterative scheme of the method is given by $x_{n+1} = x_n - \Lambda_n (I - [x_n, u_n, v_n; P] \tilde{\Lambda}_n P(u_n) \Lambda_n)^{-1} P(x_n)$ where $\Lambda_n = [x_n, u_n; P]^{-1}$ and $\tilde{\Lambda}_n = [u_n, v_n; P]^{-1}$ are the inverses of the divided differences of the first order of P, $[x_n, u_n, v_n; P]$ is the divided difference of the second order of P, $u_n = F(x_n)$, and $v_n = F(u_n) = F(F(x_n))$.

It is proved under mild conditions that the operator equation has a unique solution x^* in a proper neighbourhood of the given initial point, and that the sequence generated by the method converges to x^*.

Reviewer: Xu Chengxian (Xian)

MSC:

65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators

Keywords:

convergence; iterative method; Fréchet space; method of tangent hyperbolas; divided difference; nonlinear operator equation