Effect of moving stretching sheets on natural convection in partially heated square cavity filled with nanofluid. (English) Zbl 07533170

Summary: This article deals with the heat transfer enhancement due to buoyancy force in a partially heated square enclosure filled with nanofluids. The model is developed to analyse the behaviour of nanofluids taking into account of volume fraction and stretching parameter, when square horizontal walls are moving in opposite directions to each other. Implicit alternate direct finite difference method has been used to solve the governing equations of vorticity, energy, and kinematics. Graphically investigated the effect of physical pertinent controlling parameters on the dimensionless velocity, streamlines, isothermal, and Nusselt number. The obtained numerical solution achieves the best configuration for Rayleigh number $10^3 \leq Ra \leq 10^5$, stretching parameter $0 \leq \tau \leq 2.5$, and volume fraction $0 \leq \varphi \leq 0.2$. It is found that the stretching parameter and direction of moving walls affect the fluid flow, flow strength, and heat transfer in the cavity.

MSC:
65N06 Finite difference methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
34B08 Parameter dependent boundary value problems for ordinary differential equations
76E06 Convection in hydrodynamic stability
80A20 Heat and mass transfer, heat flow (MSC2010)

Keywords: heat transfer; moving boundary; nanofluid; natural convection; stretching sheet

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.