Let I and J be two intervals of positive integers of the same length. A bijection $f : I \to J$ is called a **coprime matching** if $f(i)$ is relatively prime to i for every $i \in I$. In the article under review, the author proves that there is a positive constant c such that if n is sufficiently large, $m > c(\log n)^2$, and $I, J \subset \{1, 2, \ldots, n\}$ with $|I| = |J| = 2m$, then there is a coprime matching of I and J. This result, Theorem 1 of the paper, improves on a theorem of Bohman and Peng, which requires $m > \exp(C(\log \log n)^2)$ where C is a positive constant. The proof proceeds by reducing the problem to one concerning the number of 2-coprime pairs (that is, the only common prime factor of the pair is 2) between elements of I and J. The argument then relies on a result of Iwaniec asserting that, typically, many elements of a subset $S \subset I$ are 2-coprime to many elements of J.

Interestingly, Theorem 1 (as well as the Bohman-Peng result) has applications to the lonely runner conjecture, which states that if v_1, \ldots, v_n are distinct positive integers, then there exists $t \in \mathbb{R}$ such that no quantity of the form $v_i t$ is strictly within $1/(n+1)$ of any integer. Theorem 1 establishes this conjecture in the case in which each v_i is at most $2n - c'(\log n)^2$.

Reviewer: Lee Troupe (Macon)

MSC:

11B75 Other combinatorial number theory
11A25 Arithmetic functions; related numbers; inversion formulas

Keywords:

lonely runner conjecture; coprime mappings

Full Text: arXiv Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.