Arutyunov, A. V.
On the theory of quadratic mappings in Banach spaces. (English. Russian original)

Let X be a Banach space and $A : X \times X \to E^n$ be a bilinear continuous mapping with values in n-dimensional space and such that $A(x_1, x_2) = A(x_2, x_1) \forall x_i \in X$. The mapping $Q : X \to E^n$ defined by $Q(x) = A(x, x)$ is called a quadratic mapping. Let C be a closed convex cone in E and $H = \{x \in X : Q(x) \in C\}$. A quadratic mapping Q is said to be strongly 2-regular (with respect to the cone C) if there exists an $\varepsilon > 0$ such that $A(x, D_X) \supseteq \{z \in E^n : z \in \text{Lin}C^0, |z| \leq \varepsilon\}$ for all x in the unit sphere of X and $\rho(Q(x), C) \leq \varepsilon$, where D_X is the unit ball in X, $C^0 = \{z \in E^n : \langle z, e \rangle \leq 0 \forall e \in C\}$ is the cone dual to C, Lin is the linear span of a set, and ρ is the distance from a point to a set. The author describes the weak closure of H and gets a criterion for a quadratic mapping to be strongly 2-regular.

Reviewer: Liu Zheng (Anshan)

MSC:
46B20 Geometry and structure of normed linear spaces
49K27 Optimality conditions for problems in abstract spaces

Keywords:
weak closure; Fréchet-differentiable; bilinear continuous mapping with values in n-dimensional space; criterion for a quadratic mapping to be strongly 2-regular