Makri, Stavroula

The braid group $B_{n,m}(\mathbb{R}P^2)$ and the splitting problem of the generalised Fadell-Neuwirth short exact sequence. (English) Zbl 07573824

Topology Appl. 318, Article ID 108202, 35 p. (2022)

Summary: Let n, $m \in \mathbb{N}$, and let $B_{n,m}(\mathbb{R}P^2)$ be the set of $(n+m)$-braids of the projective plane whose associated permutation lies in the subgroup $S_n \times S_m$ of the symmetric group S_{n+m}. We study the splitting problem of the following generalisation of the Fadell-Neuwirth short exact sequence:

$$1 \to B_n(\mathbb{R}P^2 \setminus \{x_1, \ldots, x_n\}) \to B_{n,m}(\mathbb{R}P^2) \to B_n(\mathbb{R}P^2) \to 1,$$

where the map \tilde{q} can be considered geometrically as the epimorphism that forgets the last m strands, as well as the existence of a section of the corresponding fibration $q : F_{n+m}(\mathbb{R}P^2)/S_n \times S_m \to F_n(\mathbb{R}P^2)/S_n$, where we denote by $F_n(\mathbb{R}P^2)$ the nth ordered configuration space of the projective plane $\mathbb{R}P^2$.

Our main results are the following: if $n = 1$ the homomorphism \tilde{q} and the corresponding fibration q admits no section, while if $n = 2$, then \tilde{q} and q admit a section. For $n \geq 3$, we show that if \tilde{q} and q admit a section then $m \equiv 0$, $(n-1)^2 \mod n(n-1)$. Moreover, using geometric constructions, we show that the homomorphism \tilde{q} and the fibration q admit a section for $m = kn(2n-1)(2n-2)$, where $k \geq 1$, and for $m = 2n(n-1)$. In addition, we show that for $m \geq 3$, $B_{n,m}(\mathbb{R}P^2 \setminus \{x_1, \ldots, x_n\})$ is not residually nilpotent and for $m \geq 5$, it is not residually solvable.

MSC:
- 54-XX General topology
- 55-XX Algebraic topology
- 57-XX Manifolds and cell complexes

Keywords:
- surface braid group; group presentation; Fadell-Neuwirth short exact sequence; section problem; fibration; residually nilpotent; residually solvable

Full Text: DOI

References:

[22] Zariski, O., The topological discriminant group of a Riemann surface of genus p, Am. J. Math., 59, 335-358 (1937) · Zbl 63.0338.02

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.