Alhakim, Abbas
Designing preference functions for de Bruijn sequences with forbidden words. (English)
Zbl 07589701
Des. Codes Cryptography 90, No. 10, 2319-2335 (2022)

Summary: A preference function provides a method to build periodic sequences by specifying a set of rules that determine which symbols are to be attempted before others, when the sequence is constructed one symbol at a time. The well-known prefer-one, prefer-opposite, and prefer-same binary de Bruijn sequences are all constructed using appropriate preference functions. In this article we provide some fairly general results that give conditions for a pair of an initial word and a preference function on a q-ary alphabet to produce sequences that include every pattern of given size $n \geq 1$-except possibly some specified set of patterns. We provide several old and new constructions that showcase the flexibility of the results. Specifically, we give a construction for square-free and general separative de Bruijn sequences. The existence of these sequences was established more than a decade ago but nonconstructively. An important special case of these separative sequences produces universal cycles for permutations. We also build a preference function for binary de Bruijn sequences of patterns with a maximum density of ones. As for full de Bruijn sequences, the main result helps furnish a recursive construction from arbitrary cyclic permutations of q symbols. Finally, we build a preference function that extends a full de Bruijn sequence of order n into one of order $n + 1$.

MSC:
68R15 Combinatorics on words
68R05 Combinatorics in computer science

Keywords:
de Bruijn sequence; Ford sequence; preference function; forbidden words

Full Text: DOI

References:
[8] Eldert, C.; Gray, HJ; Gurk, HM; Rubinoff, M., Shifting counters, AIEE Trans., 77, 70-74 (1958)

Knuth, DE, The Art of Computer Programming (1968), Reading: Addison-Wesley, Reading - Zbl 0191.17903

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.