PG(n,q) denotes the n-dimensional projective space over the field GF(q). A k-arc of points in it with \(k \geq n+1 \) is a set \(K \) of \(k \) points with the property that no \(n+1 \) points of \(K \) lie in a hyperplane. It may be noted that the study of k-arcs in PG(n,q) is interesting for coding theory also – the k-arcs of PG(n,q) and linear MDS codes of dimension \(n+1 \) and length over GF(q) are equivalent objects.

In this paper, the authors investigate the completeness of k-arcs in PG(n,q) where q is even. All the values of \(k \) are determined, for which there exists a complete k-arc in PG(n,q), \(q \geq 2 \geq n > q - \sqrt{q}/2 - 11/4 \). This is proved by using the duality principle between k-arcs in PG(n,q) and dual k-arcs in PG(k−n−2,q), \((k \geq n+4) \). The theorems show that the classification of all complete k-arcs in PG(n,q), \(q \) even at \(q - 2 \geq n > q - \sqrt{q}/2 - 11/4 \) is closely related to the classification of all \((q+2)\)-arcs in PG(2,q).

Reviewer: T. Thrivikraman (Cochin)

MSC:
51E21 Blocking sets, ovals, k-arcs
51E22 Linear codes and caps in Galois spaces
94B05 Linear codes (general theory)

Keywords:
k-arc; codes; PG(n,q); complete arcs

Full Text: DOI

References:
[13] L. Storme and J.A. Thas, M.D.S. codes and arcs in PG(\(\{\text{q}\}, q\)) with q even: An improvement of the bounds of Bruen, Thas and Blokhuis, J. Combin. Theory, to appear. · Zbl 0771.51013
[16] Thas, J.A., Connection between the Grassmannian \(\{\text{G}\}_{k−1:n}\) and the set of the k-arcs of the Galois space sn,q, Rend. mat., 2, 6, 121-134, (1969) · Zbl 0232.50013
[19] Voloch, J.F., Complete arcs in Galois planes of non-square order, (), 401-406 · Zbl 0734.51010

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.