Sá Earp, Ricardo; Brito, Fabiano; Meeks, William H. III; Rosenberg, Harold

Structure theorems for constant mean curvature surfaces bounded by a planar curve.
(English) Zbl 0759.53003

The authors prove that a compact, connected, embedded, constant mean curvature surface in \mathbb{R}^3 whose boundary is a circle must be part of a sphere, under the additional hypothesis that along the boundary circle the surface meet the plane of the circle transversely. The proof relies on the plane-reflection technique of A. D. Alexandrov and on the force-balancing identity which holds for pieces of constant mean curvature surfaces.

Reviewer: N. Korevaar (Princeton)

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

Keywords:
Alexandrov reflection; force-balancing identity

Full Text: DOI