Let S be an $n \times n$ Hermitian matrix and let $\sigma_\sigma(S)$ denote the ordered vector of $(\lambda_1, \ldots, \lambda_n)$ of its eigenvalues with $\lambda_1 \leq \cdots \leq \lambda_n$. A well known theorem states (*): if $\sigma_\sigma(S) = (\lambda_1, \ldots, \lambda_n)$ then for each vector $v \in \mathbb{C}^n$ we have $\sigma_\sigma(S + vv^*) = (\mu_1, \ldots, \mu_n)$ where $\lambda_i \leq \mu_i$ for each i and $\mu_i \leq \lambda_{i+1}$ for $i \neq n$; conversely, for any choice of $(\mu_1, \ldots, \mu_n) \in \mathbb{R}$ satisfying these conditions there is an appropriate v (see, for example, [R. A. Horn and C. R. Johnson, Matrix analysis. 2nd ed. Cambridge: Cambridge University Press (2013; Zbl 1267.15001)]). The object of this paper is to explore such relationships of spectral interlacing further.

Fix a unitary matrix Q such that $Q^* SQ = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Then the i-th column Q is an eigenvector for the eigenvalue λ_i and we define O_Q to be the set of all Qp where $p \in \mathbb{R}^n$ has nonnegative entries. Define $F : O_Q \to P_F$ by $v \mapsto \sigma_\sigma(S + vv^*)$ where $P_F := [\lambda_1, \lambda_2] \times [\lambda_2, \lambda_3] \times \cdots \times [\lambda_n, \infty]$. Finally for $r > 0$ let $S(r) := \{v \in \mathbb{C}^n \mid \|v\| = r\}$ and $P_F(r) := \{\mu \in P_F \mid \sum_j \mu_j = r^2 + \sum_j \lambda_j\}$.

Then the restriction of F to vectors of length r defines a function $F^r : O_Q \cap S(r) \to P_F(r)$. The authors prove that F and the functions F^r are homeomorphisms and are diffeomorphisms between the interiors of the domain and image. Clearly (*) is a consequence of this result. A similar result is proved for Cauchy’s theorem on the interlacing of the eigenvalues of S with those of the $(n+1) \times (n+1)$ matrices of the form

$$T(v,e) := \begin{bmatrix} S & v \\ v^* & e \end{bmatrix}.$$

Reviewer: John D. Dixon (Ottawa)

MSC:

15B57 Hermitian, skew-Hermitian, and related matrices
15A18 Eigenvalues, singular values, and eigenvectors
15A04 Linear transformations, semilinear transformations

Keywords:
spectral interlacing; degree theory

Full Text: DOI arXiv

References:

[13] Klyachko, A.; Tao, T., The honeycomb model of $\langle G L_n(\mathbb{C}) \rangle$ tensor products II: puzzles determine facets of the

[15] Löwner, K., Über Monotone Matrixfunctionen, Math. Z., 38, 177-216 (1934) · Zbl 60.0055.01

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.